2024 (Accepted for publication)
Ceccarelli, F., Holden, SB. and Liò, P., 2024 (Accepted for publication). MUGI-MRI: Enhancing Breast Cancer Classification through Multiplex Graph Neural Networks in DCE-MRI
2024
Komorowska, UJ., Mathis, S., Didi, K., Vargas, F., Lio, P. and Jamnik, M., 2024. Dynamics-Informed Protein Design with Structure Conditioning
Bazaga, A., Lio, P. and Micklem, G., 2024. Unsupervised Pretraining for Fact Verification by Language Model Distillation. ICLR,
Papamarkou, T., Birdal, T., Bronstein, M., Carlsson, G., Curry, J., Gao, Y., Hajij, M., Kwitt, R., Liò, P., Di Lorenzo, P., Maroulas, V., Miolane, N., Nasrin, F., Ramamurthy, KN., Rieck, B., Scardapane, S., Schaub, MT., Veličković, P., Wang, B., Wang, Y., Wei, GW. and Zamzmi, G., 2024. Position: Topological Deep Learning is the New Frontier for Relational Learning Proceedings of Machine Learning Research, v. 235
Huang, K., Cao, W., Ta, H., Xiao, X. and Liò, P., 2024. Optimizing Polynomial Graph Filters: A Novel Adaptive Krylov Subspace Approach WWW 2024 - Proceedings of the ACM Web Conference,
Doi: 10.1145/3589334.3645705
Giusti, L., Reu, T., Ceccarelli, F., Bodnar, C. and Liò, P., 2024. Topological Message Passing for Higher - Order and Long - Range Interactions Proceedings of the International Joint Conference on Neural Networks,
Doi: 10.1109/IJCNN60899.2024.10650343
Ceccarelli, F., Prinzi, F., Liò, P., Vitabile, S. and Holden, SB., 2024. MUGI-MRI: Enhancing Breast Cancer Classification through Multiplex Graph Neural Networks in DCE-MRI Proceedings of the International Joint Conference on Neural Networks,
Doi: http://doi.org/10.1109/IJCNN60899.2024.10650117
Bazaga, A., Lio, P. and Micklem, G., 2024. Language Model Knowledge Distillation for Efficient Question Answering in Spanish. Tiny Papers @ ICLR,
Iuliano, A., Lio, P., Manfredi, G. and Romaniello, F., 2024. Denoising Probabilistic Diffusion Models for Synthetic Healthcare Image Generation 2024 IEEE International Workshop on Metrology for Living Environment, MetroLivEnv 2024 - Proceedings,
Doi: http://doi.org/10.1109/MetroLivEnv60384.2024.10615511
2023
Georgiev, D., Numeroso, D., Bacciu, D. and Lio, P., 2023. Neural Algorithmic Reasoning for Combinatorial Optimisation. LoG, v. 231
Keskin, O., Lupidi, A., Giannini, F., Fioravanti, S., Magister, LC., Barbiero, P. and Liò, P., 2023. Bridging Equational Properties and Patterns on Graphs: an AI-Based Approach Proceedings of Machine Learning Research, v. 221
Lu, X., Zhang, X. and Lio, P., 2023. GAT-DNS: DNS Multivariate Time Series Prediction Model Based on Graph Attention Network ACM Web Conference 2023 - Companion of the World Wide Web Conference, WWW 2023,
Doi: http://doi.org/10.1145/3543873.3587329
Borde, HSDO., Kazi, A., Barbero, F. and Liò, P., 2023. Latent Graph Inference using Product Manifolds. ICLR,
Bernárdez, G., Telyatnikov, L., Alarcón, E., Cabellos-Aparicio, A., Barlet-Ros, P. and Liò, P., 2023. Topological Network Traffic Compression GNNet 2023 - Proceedings of the 2nd Graph Neural Networking Workshop 2023,
Doi: 10.1145/3630049.3630172
Mittone, G., Svoboda, F., Aldinucci, M., Lane, N. and Lió, P., 2023. A Federated Learning Benchmark for Drug-Target Interaction ACM Web Conference 2023 - Companion of the World Wide Web Conference, WWW 2023,
Doi: http://doi.org/10.1145/3543873.3587687
Norcliffe, A., Cebere, B., Imrie, F., Liò, P. and van der Schaar, M., 2023. SurvivalGAN: Generating Time-to-Event Data for Survival Analysis Proceedings of Machine Learning Research, v. 206
Azzolin, S., Longa, A., Barbiero, P., Liò, P. and Passerini, A., 2023. Global Explainability of GNNs via Logic Combination of Learned Concepts. ICLR,
Sun, Z., Cristea, AI., Lio, P. and Yu, J., 2023. Adaptive Distance Message Passing From the Multi-Relational Edge View. Tiny Papers @ ICLR,
Bi, X., Tang, S., Yang, Z., Deng, X., Xiao, B. and Lio, P., 2023. MMCTNet: Multi-Modal Cony-Transformer Network for Predicting Good and Poor Outcomes in Cardiac Arrest Patients Computing in Cardiology,
Doi: http://doi.org/10.22489/CinC.2023.099
Jang, A., Patel, S., Patel, S., Shah, S. and Lio, P., 2023. Predicting mortality in systemic sclerosis patients using machine learning approaches JOURNAL OF INVESTIGATIVE DERMATOLOGY, v. 143
Sun, Z., Harit, A., Cristea, AI., Wang, J. and Lio, P., 2023. A Rewiring Contrastive Patch PerformerMixer Framework for Graph Representation Learning Proceedings - 2023 IEEE International Conference on Big Data, BigData 2023,
Doi: http://doi.org/10.1109/BigData59044.2023.10386951
Di Giovanni, F., Giusti, L., Barbero, F., Luise, G., Liò, P. and Bronstein, M., 2023. On Over-Squashing in Message Passing Neural Networks: The Impact of Width, Depth, and Topology Proceedings of Machine Learning Research, v. 202
Barbiero, P., Ciravegna, G., Giannini, F., Zarlenga, ME., Magister, LC., Tonda, A., Lió, P., Precioso, F., Jamnik, M. and Marra, G., 2023. Interpretable Neural-Symbolic Concept Reasoning Proceedings of Machine Learning Research, v. 202
Norcliffe, A., Cebere, B., Imrie, F., Liò, P. and Schaar, MVD., 2023. SurvivalGAN: Generating Time-to-Event Data for Survival Analysis. AISTATS,
Joshi, CK., Bodnar, C., Mathis, SV., Cohen, T. and Liò, P., 2023. On the Expressive Power of Geometric Graph Neural Networks Proceedings of Machine Learning Research, v. 202
Liu, L., Prost, J., Zhu, L., Papadakis, N., Liò, P., Schönlieb, CB. and Aviles-Rivero, AI., 2023. SCOTCH and SODA: A Transformer Video Shadow Detection Framework Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, v. 2023-June
Doi: http://doi.org/10.1109/CVPR52729.2023.01007
Duta, I., Cassarà, G., Silvestri, F. and Lió, P., 2023. Sheaf Hypergraph Networks. NeurIPS,
Opolka, FL., Zhi, YC., Liò, P. and Dong, X., 2023. Graph Classification Gaussian Processes via Spectral Features Proceedings of Machine Learning Research, v. 216
Liu, L., Prost, J., Zhu, L., Papadakis, N., Liò, P., Schönlieb, C-B. and Avilés-Rivero, AI., 2023. SCOTCH and SODA: A Transformer Video Shadow Detection Framework. CVPR,
Zou, X., Zhao, X., Lio, P. and Zhao, Y., 2023. Will More Expressive Graph Neural Networks Do Better on Generative Tasks? LoG, v. 231
2022 (No publication date)
Moss, JD., Opolka, FL., Dumitrascu, B. and Lió, P., 2022 (No publication date). Approximate Latent Force Model Inference
2022 (Accepted for publication)
Margeloiu, A., Simidjievski, N., Lio, P. and Jamnik, M., 2022 (Accepted for publication). Weight predictor network with feature selection for small sample tabular biomedical data
Scherer, P., Lio, P. and Jamnik, M., 2022 (Accepted for publication). Distributed representations of graphs for drug pair scoring Proceedings of the First Learning on Graphs Conference (LoG 2022), v. PMLR 198
Espinosa Zarlenga, M., Barbiero, P., Ciravegna, G., Marra, G., Giannini, F., Diligenti, M., Shams, Z., Precioso, F., Melacci, S., Weller, A., Lio, P. and Jamnik, M., 2022 (Accepted for publication). Concept embedding models: Beyond the Accuracy-Explainability Trade-Off
2022
Barbiero, P., Ciravegna, G., Giannini, F., Lió, P., Gori, M. and Melacci, S., 2022. Entropy-Based Logic Explanations of Neural Networks Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022, v. 36
Opolka, FL., Zhi, YC., Liò, P. and Dong, X., 2022. Adaptive Gaussian Processes on Graphs via Spectral Graph Wavelets Proceedings of Machine Learning Research, v. 151
Buterez, D., Janet, JP., Kiddle, SJ., Oglic, D. and Liò, P., 2022. Graph Neural Networks with Adaptive Readouts. NeurIPS,
Georgiev, D., Barbiero, P., Kazhdan, D., Veličković, P. and Liò, P., 2022. Algorithmic Concept-Based Explainable Reasoning Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022, v. 36
Jain, R., Ciravegna, G., Barbiero, P., Giannini, F., Buffelli, D. and Lio, P., 2022. Extending Logic Explained Networks to Text Classification Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022,
Pándy, M., Qiu, W., Corso, G., Veličković, P., Ying, R., Leskovec, J. and Liò, P., 2022. Learning Graph Search Heuristics Proceedings of Machine Learning Research, v. 198
Tailor, SA., Opolka, FL., Liò, P. and Lane, ND., 2022. DO WE NEED ANISOTROPIC GRAPH NEURAL NETWORKS? ICLR 2022 - 10th International Conference on Learning Representations,
Lu, X., Zhao, J. and Lio, P., 2022. Robust android malware detection based on subgraph network and denoising GCN network MobiSys 2022 - Proceedings of the 2022 20th Annual International Conference on Mobile Systems, Applications and Services,
Doi: http://doi.org/10.1145/3498361.3538778
He, Y., Veličković, P., Liò, P. and Deac, A., 2022. Continuous Neural Algorithmic Planners Proceedings of Machine Learning Research, v. 198
Aghakhanyan, G., Barucci, A., Colantonio, S., Colcelli, V., Pasquinelli, F., Gini, R., Lio, P., Mazzei, M., Erba, P., Miele, V. and Neri, E., 2022. NAVIGATOR: An Imaging Biobank to Precisely Prevent and Predict cancer, and facilitate the Participation of oncologic patients to Diagnosis and Treatment EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, v. 49
Cardozo, S., Montero, GI., Kazhdan, D., Dimanov, B., Wijaya, MA., Jamnik, M. and Liò, P., 2022. Explainer Divergence Scores (EDS): Some Post-Hoc Explanations May be Effective for Detecting Unknown Spurious Correlations. CIKM Workshops, v. 3318
Imrie, F., Norcliffe, A., Liò, P. and van der Schaar, M., 2022. Composite Feature Selection Using Deep Ensembles Advances in Neural Information Processing Systems, v. 35
Buffelli, D., Liò, P. and Vandin, F., 2022. SizeShiftReg: a Regularization Method for Improving Size-Generalization in Graph Neural Networks Advances in Neural Information Processing Systems, v. 35
Lu, X., Pang, R. and Lio, P., 2022. Poster: CFMAP: A Robust CPU Clock Fingerprint Model for Device Authentication Proceedings of the ACM Conference on Computer and Communications Security,
Doi: http://doi.org/10.1145/3548606.3563528
Bodnar, C., Di Giovanni, F., Chamberlain, BP., Liò, P. and Bronstein, M., 2022. Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs Advances in Neural Information Processing Systems, v. 35
Jamasb, AR., Viñas, R., Ma, EJ., Harris, C., Huang, K., Hall, D., Lió, P. and Blundell, TL., 2022. Graphein - a Python Library for Geometric Deep Learning and Network Analysis on Biomolecular Structures and Interaction Networks Advances in Neural Information Processing Systems, v. 35
Barbero, F., Bodnar, C., de Ocáriz Borde, HS., Bronstein, M., Veličković, P. and Liò, P., 2022. SH EA F NEU RA L NETWO RK S W ITH CO NN ECTIO N LAPLACIANS Proceedings of Machine Learning Research, v. 196
Buffelli, D., Lió, P. and Vandin, F., 2022. SizeShiftReg: a Regularization Method for Improving Size-Generalization in Graph Neural Networks. NeurIPS,
Imrie, F., Norcliffe, A., Lió, P. and Schaar, MVD., 2022. Composite Feature Selection Using Deep Ensembles. NeurIPS,
Campbell, A., Qendro, L., Liò, P. and Mascolo, C., 2022. ROBUST AND EFFICIENT UNCERTAINTY AWARE BIOSIGNAL CLASSIFICATION VIA EARLY EXIT ENSEMBLES ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, v. 2022-May
Doi: http://doi.org/10.1109/ICASSP43922.2022.9746330
Buterez, D., Janet, JP., Kiddle, SJ., Oglic, D. and Liò, P., 2022. Graph Neural Networks with Adaptive Readouts Advances in Neural Information Processing Systems, v. 35
Zhou, B., Liu, X., Liu, Y., Huang, Y., Liò, P. and Wang, YG., 2022. Well-conditioned Spectral Transforms for Dynamic Graph Representation Proceedings of Machine Learning Research, v. 198
Tilly, T., Auckland, K., Nibhani, R., Martin, J., Nihr, N., Morrell, NW., Lio', P. and Graf, S., 2022. Deep learning of regulatory regions discovers enhancer variants implicated in PAH EUROPEAN RESPIRATORY JOURNAL, v. 60
Doi: http://doi.org/10.1183/13993003.congress-2022.2543
Yi, K., Chen, J., Wang, YG., Zhou, B., Liò, P., Fan, Y. and Hamann, J., 2022. APPROXIMATE EQUIVARIANCE SO(3) NEEDLET CONVOLUTION Proceedings of Machine Learning Research, v. 196
Liu, L., Huang, Z., Liò, P., Schönlieb, CB. and Aviles-Rivero, AI., 2022. You only Look at Patches: A Patch-wise Framework for 3D Unsupervised Medical Image Registration Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 13386 LNCS
Doi: http://doi.org/10.1007/978-3-031-11203-4_21
Bodnar, C., Giovanni, FD., Chamberlain, BP., Lió, P. and Bronstein, MM., 2022. Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs. NeurIPS,
Opolka, FL., Zhi, Y-C., Liò, P. and Dong, X., 2022. Adaptive Gaussian Processes on Graphs via Spectral Graph Wavelets. AISTATS, v. 151
Cardozo, S., Montero, GI., Kazhdan, D., Dimanov, B., Wijaya, M., Jamnik, M. and Lio, P., 2022. Explainer Divergence Scores (EDS): Some Post-Hoc Explanations May be Effective for Detecting Unknown Spurious Correlations CEUR Workshop Proceedings, v. 3318
Day, B., Viñas, R., Simidjievski, N. and Liò, P., 2022. Attentional Meta-learners for Few-shot Polythetic Classification Proceedings of Machine Learning Research, v. 162
Stärk, H., Beaini, D., Corso, G., Tossou, P., Dallago, C., Günnemann, S. and Liò, P., 2022. 3D Infomax improves GNNs for Molecular Property Prediction Proceedings of Machine Learning Research, v. 162
Fan, J., Pei, J., Bi, X., Xiao, B. and Lio, P., 2022. Context Correlation Aware Network for Cardiac Segmentation Proceedings - IEEE International Conference on Multimedia and Expo, v. 2022-July
Doi: http://doi.org/10.1109/ICME52920.2022.9859985
Lu, X. and Lio, P., 2022. Second International Workshop On Artificial Intelligence To Security - AITS 2022 Proceedings - 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop Volume, DSN-W 2022,
Doi: http://doi.org/10.1109/DSN-W54100.2022.00010
Manouchehrinia, A., Ebrahimi, A., Wiil, UK., Kiani, NA., Lio, P., Olsson, T. and Kockum, I., 2022. A susceptibility network analysis of disease pathways leading to multiple sclerosis MULTIPLE SCLEROSIS JOURNAL, v. 28
Qian, P., Yang, J., Lió, P., Hu, P. and Qi, H., 2022. Joint Group-Wise Motion Estimation and Segmentation of Cardiac Cine MR Images Using Recurrent U-Net Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 13413 LNCS
Doi: http://doi.org/10.1007/978-3-031-12053-4_5
Opolka, FL. and Liò, P., 2022. Bayesian Link Prediction with Deep Graph Convolutional Gaussian Processes Proceedings of Machine Learning Research, v. 151
2021 (Accepted for publication)
Drotár, P., Jamasb, AR., Day, B., Cangea, C. and Liò, P., 2021 (Accepted for publication). Structure-aware generation of drug-like molecules
Norcliffe, A., Bodnar, C., Day, B., Moss, J. and Liò, P., 2021 (Accepted for publication). Neural ODE Processes
2021
Kazhdan, D., Dimanov, B., Terre, HA., Jamnik, M., Liò, P. and Weller, A., 2021. Is Disentanglement all you need? Comparing Concept-based & Disentanglement Approaches
Qendro, L., Campbell, A., Liò, P. and Mascolo, C., 2021. Early Exit Ensembles for Uncertainty Quantification Proceedings of Machine Learning Research, v. 158
Rocheteau, E., Liò, P. and Hyland, SL., 2021. Temporal pointwise convolutional networks for length of stay prediction in the intensive care unit. CHIL,
Norcliffe, A., Bodnar, C., Day, B., Moss, J. and Liò, P., 2021. NEURAL ODE PROCESSES ICLR 2021 - 9th International Conference on Learning Representations,
Zhu, J., Tan, C., Yang, J., Yang, G. and Lio', P., 2021. Arbitrary Scale Super-Resolution for Medical Images International Journal of Neural Systems, v. 31
Doi: http://doi.org/10.1142/S0129065721500374
Zubic, N. and Liò, P., 2021. An Effective Loss Function for Generating 3D Models from Single 2D Image Without Rendering. AIAI, v. 627
Sebenius, I., Campbell, A., Morgan, SE., Bullmore, ET. and Lio, P., 2021. Multimodal Graph Coarsening for Interpretable, MRI-Based Brain Graph Neural Network IEEE International Workshop on Machine Learning for Signal Processing, MLSP, v. 2021-January
Doi: http://doi.org/10.1109/MLSP52302.2021.9690626
Wei, X., Pu, C., He, Z. and Lio, P., 2021. Deep Reinforcement Learning-based Vaccine Distribution Strategies Proceedings - 2021 2nd International Conference on Electronics, Communications and Information Technology, CECIT 2021,
Doi: http://doi.org/10.1109/CECIT53797.2021.00082
Bodnar, C., Frasca, F., Wang, YG., Otter, N., Montúfar, G., Liò, P. and Bronstein, MM., 2021. Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks Proceedings of Machine Learning Research, v. 139
Lu, X. and Lio, P., 2021. International Workshop on Application of Intelligent Technology in Security - AITS 2021 Proceedings - 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops, DSN-W 2021,
Doi: http://doi.org/10.1109/DSN-W52860.2021.00008
Zheng, X., Zhou, B., Gao, J., Wang, YG., Liò, P., Li, M. and Montúfar, G., 2021. How Framelets Enhance Graph Neural Networks Proceedings of Machine Learning Research, v. 139
Bodnar, C., Frasca, F., Otter, N., Wang, YG., Lio, P., Montufar, G. and Bronstein, M., 2021. Weisfeiler and Lehman Go Cellular: CW Networks ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021),
Beaini, D., Passaro, S., Létourneau, V., Hamilton, WL., Corso, G. and Liò, P., 2021. Directional Graph Networks Proceedings of Machine Learning Research, v. 139
Corso, G., Ying, R., Pandy, M., Veličković, P., Leskovec, J. and Lio, P., 2021. Neural Distance Embeddings for Biological Sequences Advances in Neural Information Processing Systems, v. 34
Bellini, E., Bagnoli, F., Caporuscio, M., Damiani, E., Flammini, F., Linkov, I., Lio, P. and Marrone, S., 2021. Resilience learning through self adaptation in digital twins of human-cyber-physical systems Proceedings of the 2021 IEEE International Conference on Cyber Security and Resilience, CSR 2021,
Doi: http://doi.org/10.1109/CSR51186.2021.9527913
2020 (Published online)
Dmitry, K., Shams, Z. and Pietro, L., 2020 (Published online). MARLeME: A Multi-Agent Reinforcement Learning Model Extraction Library. 2020 International Joint Conference on Neural Networks (IJCNN),
Doi: http://doi.org/10.1109/IJCNN48605.2020.9207564
2020 (No publication date)
Bardozzo, F., Lio', P. and Tagliaferri, R., 2020 (No publication date). A machine learning approach to investigate regulatory control circuits in bacterial metabolic pathways
Deasy, J., Ercole, A. and Liò, P., 2020 (No publication date). Adaptive Prediction Timing for Electronic Health Records
2020 (Accepted for publication)
Kazhdan, D., Dimanov, B., Jamnik, M., Lio, P. and Weller, A., 2020 (Accepted for publication). Now You See Me (CME): Concept-based Model Extraction
2020
Corso, G., Cavalleri, L., Beaini, D., Liò, P. and Velickovic, P., 2020. Principal Neighbourhood Aggregation for Graph Nets. NeurIPS,
Ma, Z., Xuan, J., Wang, YG., Li, M. and Liò, P., 2020. Path Integral Based Convolution and Pooling for Graph Neural Networks. NeurIPS,
Wang, D., Jamnik, M. and Lio, P., 2020. Abstract Diagrammatic Reasoning with Multiplex Graph Networks
D’Agostino, D., Liò, P., Aldinucci, M. and Merelli, I., 2020. NeoHiC: A web application for the analysis of Hi-C data Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12313 LNBI
Doi: http://doi.org/10.1007/978-3-030-63061-4_10
Kusztos, R., Dimitri, GM. and Lió, P., 2020. Neural Models for Brain Networks Connectivity Analysis Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 11925 LNBI
Doi: http://doi.org/10.1007/978-3-030-34585-3_19
Bodnar, C., Day, B. and Lió, P., 2020. Proximal Distilled Evolutionary Reinforcement Learning. AAAI,
Di Stefano, A., Maesa, DDF., Das, SK. and Liò, P., 2020. Resolution of Blockchain Conflicts through Heuristics-based Game Theory and Multilayer Network Modeling. ICDCN 2020: Proceedings of the 21st International Conference on Distributed Computing and Networking,
Doi: http://doi.org/10.1145/3369740.3372914
Dimitri, GM., Beqiri, E., Placek, MM., Czosnyka, M., Ercole, A., Smielewski, P. and Lio, P., 2020. Introducing brain-heart crosstalks information in clinical decision support systems for TBI patients, through ICM+ 2020 11th Conference of the European Study Group on Cardiovascular Oscillations: Computation and Modelling in Physiology: New Challenges and Opportunities, ESGCO 2020,
Doi: http://doi.org/10.1109/ESGCO49734.2020.9158050
Dimitri, GM., Spasov, S., Duggento, A., Passamonti, L., Lio, P. and Toschi, N., 2020. Unsupervised stratification in neuroimaging through deep latent embeddings. Annu Int Conf IEEE Eng Med Biol Soc, v. 2020
Doi: http://doi.org/10.1109/EMBC44109.2020.9175810
Azevedo, T., Passamonti, L., Lio, P. and Toschi, N., 2020. A deep spatiotemporal graph learning architecture for brain connectivity analysis. Annu Int Conf IEEE Eng Med Biol Soc, v. 2020
Doi: http://doi.org/10.1109/EMBC44109.2020.9175360
Yeghikyan, G., Opolka, FL., Nanni, M., Lepri, B. and Lio, P., 2020. Learning Mobility Flows from Urban Features with Spatial Interaction Models and Neural Networks**To appear in the Proceedings of 2020 IEEE International Conference on Smart Computing (SMARTCOMP 2020) Proceedings - 2020 IEEE International Conference on Smart Computing, SMARTCOMP 2020,
Doi: http://doi.org/10.1109/SMARTCOMP50058.2020.00028
Norcliffe, A., Bodnar, C., Day, B., Simidjievski, N. and Lió, P., 2020. On Second Order Behaviour in Augmented Neural ODEs. NeurIPS,
Deasy, J., Simidjievski, N. and Lió, P., 2020. Constraining Variational Inference with Geometric Jensen-Shannon Divergence. NeurIPS,
Filip, A-C., Azevedo, T., Passamonti, L., Toschi, N. and Lio, P., 2020. A novel Graph Attention Network Architecture for modeling multimodal brain connectivity. Annu Int Conf IEEE Eng Med Biol Soc, v. 2020
Doi: http://doi.org/10.1109/EMBC44109.2020.9176613
2019 (No publication date)
Zhu, J., Yang, G. and Lio, P., 2019 (No publication date). How Can We Make GAN Perform Better in Single Medical Image Super-Resolution? A Lesion Focused Multi-Scale Approach 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019),
Cangea, C., Belilovsky, E., Liò, P. and Courville, A., 2019 (No publication date). VideoNavQA: Bridging the Gap between Visual and Embodied Question
Answering
Taylor, D., Spasov, S. and Liò, P., 2019 (No publication date). Co-Attentive Cross-Modal Deep Learning for Medical Evidence Synthesis and Decision Making
Webb, E., Day, B., Andres-Terre, H. and Lió, P., 2019 (No publication date). Factorised Neural Relational Inference for Multi-Interaction Systems
Opolka, FL., Solomon, A., Cangea, C., Veličković, P., Liò, P. and Hjelm, RD., 2019 (No publication date). Spatio-Temporal Deep Graph Infomax
Veličković, P., Fedus, W., Hamilton, WL., Liò, P., Bengio, Y. and Hjelm, RD., 2019 (No publication date). Deep Graph Infomax
2019 (Accepted for publication)
Azevedo, T., Passamonti, L., Lio, P. and Toschi, N., 2019 (Accepted for publication). A Machine Learning Tool for Interpreting Differences in Cognition Using Brain Features IFIP Advances in Information and Communication Technology,
Doi: http://doi.org/10.1007/978-3-030-19823-7_40
Rossi, E., Monti, F., Bronstein, M. and Liò, P., 2019 (Accepted for publication). ncRNA Classification with Graph Convolutional Networks
2019
Di Stefano, A., Scatà, M., La Corte, A., Das, SK. and Liò, P., 2019. Improving QoE in multi-layer social sensing: A cognitive architecture and game theoretic model SocialSense'19 Proceedings of the Fourth International Workshop on Social Sensing,
Doi: http://doi.org/10.1145/3313294.3313384
Satu, MS., Chandra Howlader, K., Niamat Ullah Akhund, TM., Quinn, JMW., Lio, P. and Moni, MA., 2019. Comorbidity effects of mitochondrial dysfunction to the progression of neurological disorders: Insights from a systems biomedicine perspective 2019 22nd International Conference on Computer and Information Technology, ICCIT 2019,
Doi: http://doi.org/10.1109/ICCIT48885.2019.9038388
Prokhorov, V., Pilehvar, MT., Kartsaklis, D., Liò, P. and Collier, N., 2019. Unseen word representation by aligning heterogeneous lexical semantic spaces 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
Spasov, SE. and Liò, P., 2019. Dynamic Neural Network Channel Execution for Efficient Training. BMVC,
Veličković, P., Fedus, W., Hamilton, WL., Bengio, Y., Liò, P. and Devon Hjelm, R., 2019. Deep graph infomax 7th International Conference on Learning Representations, ICLR 2019,
Tangherloni, A., Rundo, L., Spolaor, S., Nobile, MS., Merelli, I., Besozzi, D., Mauri, G., Cazzaniga, P. and Liò, P., 2019. High performance computing for haplotyping: Models and platforms Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 11339 LNCS
Doi: http://doi.org/10.1007/978-3-030-10549-5_51
Despeyroux, J., Felty, A., Liò, P. and Olarte, C., 2019. A Logical Framework for Modelling Breast Cancer Progression Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 11415 LNCS
Doi: http://doi.org/10.1007/978-3-030-19432-1_8
Serra, A., Guida, MD., Lió, P. and Tagliaferri, R., 2019. Hierarchical block matrix approach for multi-view clustering Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10834 LNBI
Doi: http://doi.org/10.1007/978-3-030-14160-8_19
Cangea, C., Belilovsky, E., Liò, P. and Courville, AC., 2019. VideoNavQA: Bridging the Gap between Visual and Embodied Question Answering. ViGIL@NeurIPS,
Zhu, J., Yang, G. and Liò, P., 2019. How Can We Make Gan Perform Better in Single Medical Image Super-Resolution? A Lesion Focused Multi-Scale Approach. ISBI,
Zhu, J., Yang, G. and Lió, P., 2019. Lesion focused super-resolution. Medical Imaging: Image Processing, v. 10949
2018 (No publication date)
Angione, C., Carapezza, G., Costanza, J., Lio, P. and Nicosia, G., 2018 (No publication date). Computing with Metabolic Machines EPiC Series in Computing, v. 10
Doi: 10.29007/t48n
2018 (Accepted for publication)
Prokhorov, V., Pilehvar, M., Kartsaklis, D., Lio, P. and Collier, N., 2018 (Accepted for publication). Unseen Word Representation by Aligning Heterogeneous Lexical Semantic Spaces
2018
Bica, I., Veličković, P., Xiao, H. and Liò, P., 2018. Multi-omics data integration using cross-modal neural networks ESANN 2018 - Proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning,
Mathur, A., Zhang, T., Bhattacharya, S., Velickovic, P., Joffe, L., Lane, ND., Kawsar, F. and Liò, P., 2018. Using deep data augmentation training to address software and hardware heterogeneities in wearable and smartphone sensing devices. IPSN '18 Proceedings of the 17th ACM/IEEE International Conference on Information Processing in Sensor Networks,
Doi: http://doi.org/10.1109/IPSN.2018.00048
Veličković, P., Casanova, A., Liò, P., Cucurull, G., Romero, A. and Bengio, Y., 2018. Graph attention networks 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings,
Velickovic, P., Karazija, L., Lane, ND., Bhattacharya, S., Liberis, E., Liò, P., Chieh, A., Bellahsen, O. and Vegreville, M., 2018. Cross-modal Recurrent Models for Weight Objective Prediction from Multimodal Time-series Data. PervasiveHealth,
Spasov, SE., Passamonti, L., Duggento, A., Lio, P. and Toschi, N., 2018. A Multi-modal Convolutional Neural Network Framework for the Prediction of Alzheimer's Disease. Annu Int Conf IEEE Eng Med Biol Soc, v. 2018
Doi: http://doi.org/10.1109/EMBC.2018.8512468
2018. 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing, PDP 2018, Cambridge, United Kingdom, March 21-23, 2018 PDP,
Merelli, I., Lio, P. and Kotenko, I., 2018. Message from General Chairs Proceedings - 26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, PDP 2018,
Doi: http://doi.org/10.1109/PDP2018.2018.00005
Merelli, I., Lio, P. and Kotenko, I., 2018. Message from Organizing Chairs Proceedings - 26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, PDP 2018,
Doi: http://doi.org/10.1109/PDP2018.2018.00006
Lu, X., Liang, C., Zhang, S., Lio, P. and Jing, S., 2018. Terminal sensitive data protection by adjusting access time bidirectionally and automatically Proceedings - International Conference on Computer Communications and Networks, ICCCN, v. 2018-July
Doi: http://doi.org/10.1109/ICCCN.2018.8487465
Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, RT., Berger, C., Ha, SM., Rozycki, M., Prastawa, M., Alberts, E., Lipkova, J., Freymann, J., Kirby, J., Bilello, M., Fathallah-Shaykh, H., Wiest, R., Kirschke, J., Wiestler, B., Colen, R., Kotrotsou, A., Lamontagne, P., Marcus, D., Milchenko, M., Nazeri, A., Weber, M-A., Mahajan, A., Baid, U., Gerstner, E., Kwon, D., Acharya, G., Agarwal, M., Alam, M., Albiol, A., Albiol, A., Albiol, FJ., Alex, V., Allinson, N., Amorim, PHA., Amrutkar, A., Anand, G., Andermatt, S., Arbel, T., Arbelaez, P., Avery, A., Azmat, M., Pranjal, B., Bai, W., Banerjee, S., Barth, B., Batchelder, T., Batmanghelich, K., Battistella, E., Beers, A., Belyaev, M., Bendszus, M., Benson, E., Bernal, J., Bharath, HN., Biros, G., Bisdas, S., Brown, J., Cabezas, M., Cao, S., Cardoso, JM., Carver, EN., Casamitjana, A., Castillo, LS., Catà, M., Cattin, P., Cerigues, A., Chagas, VS., Chandra, S., Chang, Y-J., Chang, S., Chang, K., Chazalon, J., Chen, S., Chen, W., Chen, JW., Chen, Z., Cheng, K., Choudhury, AR., Chylla, R., Clérigues, A., Colleman, S., Colmeiro, RGR., Combalia, M., Costa, A., Cui, X., Dai, Z., Dai, L., Daza, LA., Deutsch, E., Ding, C., Dong, C., Dong, S., Dudzik, W., Eaton-Rosen, Z., Egan, G., Escudero, G., Estienne, T., Everson, R., Fabrizio, J., Fan, Y., Fang, L., Feng, X., Ferrante, E., Fidon, L., Fischer, M., French, AP., Fridman, N., Fu, H., Fuentes, D., Gao, Y., Gates, E., Gering, D., Gholami, A., Gierke, W., Glocker, B., Gong, M., González-Villá, S., Grosges, T., Guan, Y., Guo, S., Gupta, S., Han, W-S., Han, IS., Harmuth, K., He, H., Hernández-Sabaté, A., Herrmann, E., Himthani, N., Hsu, W., Hsu, C., Hu, X., Hu, X., Hu, Y., Hu, Y., Hua, R., Huang, T-Y., Huang, W., Huffel, SV., Huo, Q., Vivek, HV., Iftekharuddin, KM., Isensee, F., Islam, M., Jackson, AS., Jambawalikar, SR., Jesson, A., Jian, W., Jin, P., Jose, VJM., Jungo, A., Kainz, B., Kamnitsas, K., Kao, P-Y., Karnawat, A., Kellermeier, T., Kermi, A., Keutzer, K., Khadir, MT., Khened, M., Kickingereder, P., Kim, G., King, N., Knapp, H., Knecht, U., Kohli, L., Kong, D., Kong, X., Koppers, S., Kori, A., Krishnamurthi, G., Krivov, E., Kumar, P., Kushibar, K., Lachinov, D., Lambrou, T., Lee, J., Lee, C., Lee, Y., Lee, M., Lefkovits, S., Lefkovits, L., Levitt, J., Li, T., Li, H., Li, W., Li, H., Li, X., Li, Y., Li, H., Li, Z., Li, X., Li, Z., Li, X., Li, W., Lin, Z-S., Lin, F., Lio, P., Liu, C., Liu, B., Liu, X., Liu, M., Liu, J., Liu, L., Llado, X., Lopez, MM., Lorenzo, PR., Lu, Z., Luo, L., Luo, Z., Ma, J., Ma, K., Mackie, T., Madabushi, A., Mahmoudi, I., Maier-Hein, KH., Maji, P., Mammen, CP., Mang, A., Manjunath, BS., Marcinkiewicz, M., McDonagh, S., McKenna, S., McKinley, R., Mehl, M., Mehta, S., Mehta, R., Meier, R., Meinel, C., Merhof, D., Meyer, C., Miller, R., Mitra, S., Moiyadi, A., Molina-Garcia, D., Monteiro, MAB., Mrukwa, G., Myronenko, A., Nalepa, J., Ngo, T., Nie, D., Ning, H., Niu, C., Nuechterlein, NK., Oermann, E., Oliveira, A., Oliveira, DDC., Oliver, A., Osman, AFI., Ou, Y-N., Ourselin, S., Paragios, N., Park, MS., Paschke, B., Pauloski, JG., Pawar, K., Pawlowski, N., Pei, L., Peng, S., Pereira, SM., Perez-Beteta, J., Perez-Garcia, VM., Pezold, S., Pham, B., Phophalia, A., Piella, G., Pillai, GN., Piraud, M., Pisov, M., Popli, A., Pound, MP., Pourreza, R., Prasanna, P., Prkovska, V., Pridmore, TP., Puch, S., Puybareau, É., Qian, B., Qiao, X., Rajchl, M., Rane, S., Rebsamen, M., Ren, H., Ren, X., Revanuru, K., Rezaei, M., Rippel, O., Rivera, LC., Robert, C., Rosen, B., Rueckert, D., Safwan, M., Salem, M., Salvi, J., Sanchez, I., Sánchez, I., Santos, HM., Sartor, E., Schellingerhout, D., Scheufele, K., Scott, MR., Scussel, AA., Sedlar, S., Serrano-Rubio, JP., Shah, NJ., Shah, N., Shaikh, M., Shankar, BU., Shboul, Z., Shen, H., Shen, D., Shen, L., Shen, H., Shenoy, V., Shi, F., Shin, HE., Shu, H., Sima, D., Sinclair, M., Smedby, O., Snyder, JM., Soltaninejad, M., Song, G., Soni, M., Stawiaski, J., Subramanian, S., Sun, L., Sun, R., Sun, J., Sun, K., Sun, Y., Sun, G., Sun, S., Suter, YR., Szilagyi, L., Talbar, S., Tao, D., Tao, D., Teng, Z., Thakur, S., Thakur, MH., Tharakan, S., Tiwari, P., Tochon, G., Tran, T., Tsai, YM., Tseng, K-L., Tuan, TA., Turlapov, V., Tustison, N., Vakalopoulou, M., Valverde, S., Vanguri, R., Vasiliev, E., Ventura, J., Vera, L., Vercauteren, T., Verrastro, CA., Vidyaratne, L., Vilaplana, V., Vivekanandan, A., Wang, G., Wang, Q., Wang, CJ., Wang, W., Wang, D., Wang, R., Wang, Y., Wang, C., Wang, G., Wen, N., Wen, X., Weninger, L., Wick, W., Wu, S., Wu, Q., Wu, Y., Xia, Y., Xu, Y., Xu, X., Xu, P., Yang, T-L., Yang, X., Yang, H-Y., Yang, J., Yang, H., Yang, G., Yao, H., Ye, X., Yin, C., Young-Moxon, B., Yu, J., Yue, X., Zhang, S., Zhang, A., Zhang, K., Zhang, X., Zhang, L., Zhang, X., Zhang, Y., Zhang, L., Zhang, J., Zhang, X., Zhang, T., Zhao, S., Zhao, Y., Zhao, X., Zhao, L., Zheng, Y., Zhong, L., Zhou, C., Zhou, X., Zhou, F., Zhu, H., Zhu, J., Zhuge, Y., Zong, W., Kalpathy-Cramer, J., Farahani, K., Davatzikos, C., Leemput, KV. and Menze, B., 2018. Identifying the Best Machine Learning Algorithms for Brain Tumor
Segmentation, Progression Assessment, and Overall Survival Prediction in the
BRATS Challenge
Wang, D., Zhang, R., Zhu, J., Teng, Z., Huang, Y., Spiga, F., Hong-Fei Du, M., Gillard, JH., Lu, Q. and Liò, P., 2018. Neural network fusion: a novel CT-MR Aortic Aneurysm image segmentation method. Proc SPIE Int Soc Opt Eng, v. 10574
Doi: http://doi.org/10.1117/12.2293371
2017
Heffernan, K., Liò, P. and Teufel, S., 2017. Multilayer data and document stratification for comorbidity analysis Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10477 LNBI
Doi: http://doi.org/10.1007/978-3-319-67834-4_17
Felicetti, L., Femminella, M., Ivanov, T., Lio, P. and Reali, G., 2017. A big-data layered architecture for analyzing molecular communications systems in blood vessels Proceedings of the 4th ACM International Conference on Nanoscale Computing and Communication, NanoCom 2017,
Doi: http://doi.org/10.1145/3109453.3109468
Brouwer, T. and Lio, P., 2017. Bayesian Hybrid Matrix Factorisation for Data Integration Proceedings of Machine Learning Research, v. 54
2016
Angione, C., Liò, P., Pucciarelli, S., Can, B., Conway, M., Lotti, M., Bokhari, H., Mancini, A., Sezerman, U. and Telatin, A., 2016. Bioinformatics challenges and potentialities in studying extreme environments Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 9874 LNCS
Doi: http://doi.org/10.1007/978-3-319-44332-4_16
Tordini, F., Merelli, I., Liò, P., Milanesi, L. and Aldinucci, M., 2016. NuchaRT: Embedding high-level parallel computing in R for augmented Hi-C data analysis Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 9874 LNCS
Doi: http://doi.org/10.1007/978-3-319-44332-4_20
Pratanwanich, N., Lió, P. and Stegle, O., 2016. Warped matrix factorisation for multi-view data integration Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 9852 LNAI
Doi: http://doi.org/10.1007/978-3-319-46227-1_49
Alarcon, E., Cid-Fuentes, RG., Davy, A., Felicetti, L., Femminella, M., Lio, P., Reali, G. and Solé-Pareta, J., 2016. MolComML: The molecular communication markup language Proceedings of the 3rd ACM International Conference on Nanoscale Computing and Communication, ACM NANOCOM 2016,
Doi: http://doi.org/10.1145/2967446.2967460
2016. Computational Methods in Systems Biology - 14th International Conference, CMSB 2016, Cambridge, UK, September 21-23, 2016, Proceedings CMSB, v. 9859
Lu, X. and Lio, P., 2016. Privacy Information Security Classification and Comparison between the Westerner and Chinese Proceedings - 2015 International Conference on Identification, Information, and Knowledge in the Internet of Things, IIKI 2015,
Doi: http://doi.org/10.1109/IIKI.2015.10
He, P., Mao, Y., Liu, Q., Liò, P. and Yang, K., 2016. Channel modelling of molecular communications across blood vessels and nerves 2016 IEEE International Conference on Communications, ICC 2016,
Doi: http://doi.org/10.1109/ICC.2016.7510860
Velickovic, P., Wang, D., Lane, ND. and Liò, P., 2016. X-CNN: Cross-modal convolutional neural networks for sparse datasets. SSCI,
2015
Pratanwanich, N. and Lio, P., 2015. Who wrote this? Textual modeling with authorship attribution in big data IEEE International Conference on Data Mining Workshops, ICDMW, v. 2015-January
Doi: http://doi.org/10.1109/ICDMW.2014.140
Lu, X., Lio, P. and Hui, P., 2015. A content dissemination model for mobile internet to minimize load on cellular network Electronics, Communications and Networks IV - Proceedings of the 4th International Conference on Electronics, Communications and Networks, CECNet2014,
Doi: http://doi.org/10.1201/b18592-54
Tordini, F., Drocco, M., Misale, C., Milanesi, L., Lio, P., Merelli, I. and Aldinucci, M., 2015. Parallel Exploration of the Nuclear Chromosome Conformation with <i>NuChart</i>-<i>II</i> 23RD EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED PROCESSING (PDP 2015),
Doi: 10.1109/PDP.2015.104
Boutorh, A., Pratanwanich, N., Guessoum, A. and Liò, P., 2015. Drug repurposing by optimizing mining of genes target association Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8623
Doi: http://doi.org/10.1007/978-3-319-24462-4_18
Di Serio, C., Liò, P., Nonis, A. and Tagliaferri, R., 2015. Computational intelligence methods for bioinformatics and biostatistics: 11th international meeting, CIBB 2014 Cambridge, UK, june 26–28, 2014 revised selected papers Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8623
Bardozzo, F., Lió, P. and Tagliaferri, R., 2015. Multi omic oscillations in bacterial pathways Proceedings of the International Joint Conference on Neural Networks, v. 2015-September
Doi: http://doi.org/10.1109/IJCNN.2015.7280853
Tordini, F., Drocco, M., Merelli, I., Milanesi, L., Liò, P. and Aldinucci, M., 2015. NuChart-II: A graph-based approach for analysis and interpretation of Hi-C data Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8623
Doi: http://doi.org/10.1007/978-3-319-24462-4_25
Hamey, FK., Shavit, Y., Maciulyte, V., Town, C., Liò, P. and Tosi, S., 2015. Automated detection of fluorescent probes in molecular imaging Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8623
Doi: http://doi.org/10.1007/978-3-319-24462-4_6
Iuliano, A., Occhipinti, A., Angelini, C., De Feis, I. and Lió, P., 2015. Applications of network-based survival analysis methods for pathways detection in cancer Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8623
Doi: http://doi.org/10.1007/978-3-319-24462-4_7
Korhonen, A., Guo, Y., Baker, S., Yetisgen-Yildiz, M., Stenius, U., Narita, M. and Liò, P., 2015. Improving literature-based discovery with advanced text mining Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8623
Doi: http://doi.org/10.1007/978-3-319-24462-4_8
Tordini, F., Drocco, M., Misale, C., Milanesi, L., Lió, P., Merelli, I. and Aldinucci, M., 2015. Parallel exploration of the nuclear Chromosome Conformation with NuChart-II Proceedings - 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, PDP 2015,
Doi: http://doi.org/10.1109/PDP.2015.104
2014 (No publication date)
Angione, C., Bartocci, E., Bortolussi, L., Lio, P., Occhipinti, A. and Sanguinetti, G., 2014 (No publication date). Bayesian Design for Whole Cell Synthetic Biology Models Proceedings of the Third International Workshop on Hybrid Systems Biology (HSB 2014),
Angione, C., Pratanwanich, N. and Lio, P., 2014 (No publication date). A hybrid of multi-omics FBA and Bayesian factor modeling to identify pathway crosstalks Proceedings of the 6th International Workshop on Bio-Design Automation (IWBDA),
Scata', M., Di Stefano, A., Giacchi, E., La Corte, A. and Lio, P., 2014 (No publication date). The Bio-Inspired and Social Evolution of Node and Data in a Multilayer Network SCITEPRESS Digital Library,
Fernandes, P., Lio, P. and Milanesi, L., 2014 (No publication date). Challenges in building an e-health infrastructure for P5 Medicine
2014
Lió, P., 2014. Computing longevity: Insights from controls Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8738 LNBI
Doi: http://doi.org/10.1007/978-3-319-10398-3_4
Lu, X., Lio, P., Hui, P. and Qu, Z., 2014. Nodes density adaptive opportunistic forwarding protocol for intermittently connected networks Proceedings - 2014 International Conference on Identification, Information and Knowledge in the Internet of Things, IIKI 2014,
Doi: http://doi.org/10.1109/IIKI.2014.67
Felicetti, L., Femminella, M., Reali, G. and Liò, P., 2014. Endovascular mobile sensor network for detecting circulating tumoral cells BODYNETS 2014 - 9th International Conference on Body Area Networks,
Doi: http://doi.org/10.4108/icst.bodynets.2014.256917
Bartoszek, K. and Lio, P., 2014. A novel algorithm to reconstruct phylogenies using gene sequences and expression data
2013 (No publication date)
Nguyen, VA. and Lio, P., 2013 (No publication date). Filling in the gaps of biological network
2013
Bansal, A., Azad, S. and Lio, P., 2013. Malaria Incidence Forecasting and Its Implication to Intervention Proceedings of the European Conference on Complex Systems 2012,
Lio, P., Iacovella, L., Bianchi, L. and Nguyen, V., 2013. Information Filtering and Learning: From Heuristics to Social
Eudaimonia Proceedings of the European Conference on Complex Systems 2012,
Angione, C., Carapezza, G., Costanza, J., Lio, P. and Nicosia, G., 2013. The Role of the Genome in the Evolution of the Complexity
of Metabolic Machines Proceedings of the European Conference on Complex Systems 2012,
2013. Proceedings of the Twelfth European Conference on the Synthesis and Simulation of Living Systems: Advances in Artificial Life, ECAL 2013, Sicily, Italy, September 2-6, 2013 ECAL,
Bianchi, L., Fernandes, P. and Lio, P., 2013. Improving collective awareness and education about the privacy and ethical issues connected with the genome technologies The Future of Education, Conference Proceedings 2013,
Liò, P., 2013. Methodologies for Systems Medicine: Time to Join the Forces of Bioengineering and Bioinformatics. BIOINFORMATICS,
Pratanwanich, N. and Lio, P., 2013. Bayesian Inference for Learning Between-Pathway Network: A New Tool for Studying Drug-Disease Interactions HUMAN HEREDITY, v. 76
2012
Kim, H., Khoo, WM. and Lio, P., 2012. Polymorphic Attacks against Sequence-based Software Birthmarks
2012. Artificial Immune Systems - 11th International Conference, ICARIS 2012, Taormina, Italy, August 28-31, 2012. Proceedings ICARIS, v. 7597
2011 (No publication date)
Lio, P., 2011 (No publication date). Long Range Properties of DNA Sequences Collana Franco Angeli Editore,
2011
2011. Artificial Immune Systems - 10th International Conference, ICARIS 2011, Cambridge, UK, July 18-21, 2011. Proceedings ICARIS, v. 6825
Lio, P., Emanuela Merelli, and Nicola Paoletti, NP., 2011. Multiple verification in computational modeling of bone pathologies EPTCS, v. 67
Merelli, E., Paoletti, N. and Lio, P., 2011. Methodological Bridges for Multi-Level Systems Procedia Computer Science, v. 7
2010
Chan, TM., Leung, KS., Lee, KH. and Lio, P., 2010. Generic Spaced DNA Motif Discovery Using Genetic Algorithm 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC),
Papini, A., Nicosia, G., Stracquadanio, G., Lio, P. and Umeton, R., 2010. Key Enzymes for the Optimization of CO2 Uptake and Nitrogen Consumption in the C-3 Photosynthetic Carbon Metabolism JOURNAL OF BIOTECHNOLOGY, v. 150
Doi: http://doi.org/10.1016/j.jbiotec.2010.09.846
Ostilli, M., Yoneki, E., Leung, IXY., Mendes, JFF., Lio, P. and Crowcroft, J., 2010. Statistical mechanics of rumour spreading in network communities ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, v. 1
Doi: http://doi.org/10.1016/j.procs.2010.04.262
Papini, A., Mosti, S., Lio, P. and Haider, S., 2010. BIOLIP, a biotechnology-oriented database of oil content in plants, algae, fungi and cyanobacteria JOURNAL OF BIOTECHNOLOGY, v. 150
Doi: http://doi.org/10.1016/j.jbiotec.2010.09.012
Kitchovitch, S. and Lio, P., 2010. Risk perception and disease spread on social networks ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, v. 1
Doi: http://doi.org/10.1016/j.procs.2010.04.264
Guazzini, A., Lio, P., Bagnoli, F., Passarella, A. and Conti, M., 2010. Cognitive network dynamics in chatlines ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, v. 1
Doi: http://doi.org/10.1016/j.procs.2010.04.265
Bartoszek, K., Lio, P. and Sorathiya, A., 2010. INFLUENZA DIFFERENTIATION AND EVOLUTION SUMMER SOLSTICE 2009 INTERNATIONAL CONFERENCE ON DISCRETE MODELS OF COMPLEX SYSTEMS, v. 3
Aldinucci, M., Bracciali, A., Liò, P., Sorathiya, A. and Torquati, M., 2010. StochKit-FF: Efficient Systems Biology on Multicore Architectures. Euro-Par Workshops, v. 6586
2009
Sorathiyar, A., Lio, P. and Sguanci, L., 2009. Mathematical Model of HIV Superinfection and Comparative Drug Therapy ARTIFICIAL IMMUNE SYSTEMS, PROCEEDINGS, v. 5666
Xie, SK., Lio, P. and Lawniczak, AT., 2009. A Case Study of ICA with Multi-scale PCA of Simulated Traffic Data ARTIFICIAL NEURAL NETWORKS - ICANN 2009, PT II, v. 5769
Lu, Y-E., Roberts, SGB., Cheng, TMK., Dunbar, R., Liò, P. and Crowcroft, J., 2009. On optimising personal network size to manage information flow. CIKM-CNIKM,
Hui, P., Xu, K., Li, VOK., Crowcroft, J., Latora, V. and Lio, P., 2009. Selfishness, Altruism and Message Spreading in Mobile Social Networks IEEE INFOCOM 2009 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS,
Lu, Y-E., Roberts, SGB., Liò, P., Dunbar, R. and Crowcroft, J., 2009. Size Matters: Variation in Personal Network Size, Personality and Effect on Information Transmission. CSE (4),
Doi: 10.1109/CSE.2009.179
Xie, SK., Lio, P. and Lawniczak, AT., 2009. A Comparative Study of Noise Effect on Wavelet Based De-noising Methods IEEE TIC-STH 09: 2009 IEEE TORONTO INTERNATIONAL CONFERENCE: SCIENCE AND TECHNOLOGY FOR HUMANITY,
Xu, K., Hui, P., Li, VOK., Crowcroft, J., Latora, V. and Lio, P., 2009. Impact of Altruism on Opportunistic Communications 2009 FIRST INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS,
Kitchovitch, S., Song, YD., van der Wath, R. and Lio, P., 2009. Substitution Matrices and Mutual Information Approaches to Modeling Evolution LEARNING AND INTELLIGENT OPTIMIZATION, v. 5851
Kitchovitch, S., Leung, I., Song, YD. and Lio, P., 2009. Using Mutual Information and Models of Evolution for improved pattern detection 2009 INTERNATIONAL JOINT CONFERENCE ON BIOINFORMATICS, SYSTEMS BIOLOGY AND INTELLIGENT COMPUTING, PROCEEDINGS,
Doi: http://doi.org/10.1109/IJCBS.2009.77
Bella, G. and Lio, P., 2009. Formal Analysis of the Genetic Toggle COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY, PROCEEDINGS, v. 5688
Giampaolo Bella, GB. and Lio, P., 2009. Analysing the microRNA-17-92/Myc/E2F/RB Compound Toggle Switch by Theorem Proving Proc. of the 9th Workshop on Network Tools and Applications in Biology (Nettab’09), v. Liberodiscrivere (2009)
Sorathiya, A., Jucikas, T., Piecewicz, S., Sengupta, S. and Lio, P., 2009. Searching for Glycomics Role in Stem Cell Development COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, v. 5488
Guazzini, A., Lio, P., Passarella, A. and Conti, M., 2009. Information Processing and Timing Mechanisms in Vision ARTIFICIAL NEURAL NETWORKS - ICANN 2009, PT I, v. 5768
2008
Lu, XF., Hui, P., Lio, P. and Xiong, Z., 2008. Identity Privacy Protection by Delayed Transmission in Pocket Switched Networks EUC 2008: PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING, VOL 2, WORKSHOPS,
Lio, P., Brilli, M. and Fani, R., 2008. Topological metrics in Blast data mining: Plasmid and nitrogen-fixing proteins case studies BIOINFORMATICS RESEARCH AND DEVELOPMENT, PROCEEDINGS, v. 13
Lio, P., Angelini, C., DeFeis, I., Nguyen, V., Cutillo, L. and va der Wath, R., 2008. Statistical issues for combining replicates and nearby species data and different omics Proceedings The Art and Science of Statistical Bioinformatics The 27th Leeds Annual Statistical Research Workshop 15th - 17th July 2008,
Nguyen, VA., Koukolikova-Nicola, Z., Bagnoli, F. and Lio, P., 2008. Bayesian Inference on Hidden Knowledge in High-Throughput Molecular Biology Data PRICAI 2008: TRENDS IN ARTIFICIAL INTELLIGENCE, v. 5351
van der Wath, RC. and Lio, P., 2008. A Stochastic Single Cell Based Model of BrdU Measured Hematopoietic Stem Cell Kinetics COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY, PROCEEDINGS, v. 5307
Lee, U., Magistretti, E., Gerla, M., Bellavista, P., Lio, P. and Lee, KW., 2008. Bio-Inspired Multi-agent Collaboration for Urban Monitoring Applications BIO-INSPIRED COMPUTING AND COMMUNICATION, v. 5151
van der Wath, RC. and Lio, P., 2008. A Stochastic Multi-agent Model of Stem Cell Proliferation CELLULAR AUTOMATA, PROCEEDINGS, v. 5191
Koukolikova-Nicola, Z., Lio, P. and Bagnoli, F., 2008. Inference on missing values in genetic networks using high-throughput data EVOLUTIONARY COMPUTATION, MACHINE LEARNING AND DATA MINING IN BIOINFORMATICS, PROCEEDINGS, v. 4973
Kershenbaum, A., Pappas, V., Lee, KW., Lio, P., Sadler, B. and Verma, D., 2008. A biologically-inspired MANET architecture - art. no. 698106 DEFENSE TRANSFORMATION AND NET-CENTRIC SYSTEMS 2008, v. 6981
Angelini, C., Cutillo, L., De Feis, I., Lio, P. and van der Wath, R., 2008. Combining experimental evidences from replicates and nearby species data for annotating novel genomes COLLECTIVE DYNAMICS: TOPICS ON COMPETITION AND COOPERATION IN THE BIOSCIENCES, v. 1028
Leung, IXY., Gibbs, G., Bagnoli, F., Sorathiya, A. and Lio, P., 2008. Contact Network Modeling of Flu Epidemics CELLULAR AUTOMATA, PROCEEDINGS, v. 5191
Lu, XF., Chen, YC., Leung, I., Xiong, Z. and Lio, P., 2008. A novel mobility model from a heterogeneous military MANET trace AD-HOC, MOBILE AND WIRELESS NETWORKS, PROCEEDINGS, v. 5198
van der Wath, RC., van der Wath, E., Carapelli, A., Nardi, F., Frati, F., Milanesi, L. and Lio, P., 2008. Bayesian phylogeny on grid BIOINFORMATICS RESEARCH AND DEVELOPMENT, PROCEEDINGS, v. 13
Xie, SK., Lawniczak, AT. and Lio, P., 2008. Parametric & non-parametric analysis of mean treatment effects of number of packets in transit in data network model 2008 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-4,
2008. Bio-Inspired Computing and Communication, First Workshop on Bio-Inspired Design of Networks, BIOWIRE 2007, Cambridge, UK, April 2-5, 2007, Revised Selected Papers BIOWIRE, v. 5151
Lu, XF., Wicker, F., Lio', P. and Towsley, D., 2008. Security Estimation Model with Directional Antennas 2008 IEEE MILITARY COMMUNICATIONS CONFERENCE: MILCOM 2008, VOLS 1-7,
Allen, SM., Conti, M., Crowcroft, J., Dunbar, R., Liò, P., Mendes, JFF., Molva, R., Passarella, A., Stavrakakis, I. and Whitaker, RM., 2008. Social Networking for Pervasive Adaptation. SASO Workshops,
Kershenbaum, A., Pappas, V., Lee, KW., Lio, P., Sadler, B. and Verma, D., 2008. A Biologically-Inspired MANET Architecture Proceedings of SPIE, the International Society for Optical Engineering,
Lu, YE., Lio, P. and Hand, S., 2008. Beta Random Projection BIO-INSPIRED COMPUTING AND COMMUNICATION, v. 5151
Schwarz, E., Leweke, FM., Bahn, S. and Lio, P., 2008. Combining molecular and physiological data of complex disorders BIOINFORMATICS RESEARCH AND DEVELOPMENT, PROCEEDINGS, v. 13
Allen, SM., Conti, M., Crowcroft, J., Dunbar, R., Lio, P., Mendes, JF., Molva, R., Passarella, A., Stavrakakis, I. and Whitaker, RM., 2008. Social Networking for Pervasive Adaptation SASOW 2008: SECOND IEEE INTERNATIONAL CONFERENCE ON SELF-ADAPTIVE AND SELF-ORGANIZING SYSTEMS WORKSHOPS, PROCEEDINGS,
Bagnoli, F., Guazzini, A. and Lio, P., 2008. Human Heuristics for Autonomous Agents BIO-INSPIRED COMPUTING AND COMMUNICATION, v. 5151
2007
Milanesi, L., Lio, P. and Breton, V., 2007. Bioinformatics Challenges in Life Science IST-Africa 2007 Conference Proceedings, Paul Cunningham and Miriam Cunningham (Eds), IIMC International Information Management Corporation, 2007, ISBN: 1-905824-04-1,
Angelini, C., Cutillo, L., De Feis, I., Van der Wath, R. and Lio, P., 2007. Identifying regulatory sites using neighborhood species Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, Proceedings, v. 4447
Lawniczak, AT., Lio, P., Xie, S. and Xu, JY., 2007. Wavelet spectral analysis of packet traffic near phase transition point from free flow to congestion in data network model 2007 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-3,
Fani, R., Brilli, M., Fondi, M. and Lio, P., 2007. The role of gene fusions in the evolution of metabolic pathways: the histidine biosynthesis case BMC EVOLUTIONARY BIOLOGY, v. 7
Doi: http://doi.org/10.1186/1471-2148-7-S2-S4
Carapelli, A., Lio, P., Nardi, F., van der Wath, E. and Frati, F., 2007. Phylogenetic analysis of mitochondrial protein coding genes confirms the reciprocal paraphyly of Hexapoda and Crustacea BMC EVOLUTIONARY BIOLOGY, v. 7
Doi: http://doi.org/10.1186/1471-2148-7-S2-S8
Lu, YE., Hand, S. and Lio, P., 2007. Keyword searching in structured overlays via content distance addressing Databases, Information Systems, and Peer-to-Peer Computing, v. 4125
2006
Sguanci, L., Lio, P. and Bagnoli, F., 2006. The influence of risk perception in epidemics: A cellular agent model CELLULAR AUTOMATA, PROCEEDINGS, v. 4173
Sguanci, L., Lio, P. and Bagnoli, F., 2006. Modeling evolutionary dynamics of HIV infection COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY, PROCEEDINGS, v. 4210
Fani, R., Caramelli, D. and Lio, P., 2006. It happened... From prebiotic chemistry to human evolution Rivista di biologia,
2005
Lu, YE., Hand, S. and Lio, P., 2005. Keyword searching in hypercubic manifolds Fifth IEEE International Conference on Peer-to-Peer Computing, Proceedings,
2003
2002
Brilli, M., Lio, P., Lazcano, A. and Fani, R., 2002. Evolution of TIM barrel: Multiple gene elongation events in HisA. Origins of Life and Evolution of the Biosphere, v. 22
Lio, P., 2002. Structure and evolution of the histidine biosynthetic pathway Origins of Life and Evolution of the Biosphere, v. 22
1999
Hagelberg, E., Kayser, M., Nagy, M., Roewer, L., Zimdahl, H., Krawczak, M., Lió, P. and Schiefenhövel, W., 1999. Molecular genetic evidence for the human settlement of the Pacific: analysis of mitochondrial DNA, Y chromosome and HLA markers. Philos Trans R Soc Lond B Biol Sci, v. 354
Doi: http://doi.org/10.1098/rstb.1999.0367
1997
Dewar, J., Wheatley, A., Wilkinson, J., Holgate, ST., Thomas, NS., Lio, P., Morton, NE. and Hall, IP., 1997. Association of the Gln 27 beta(2)-adrenoceptor polymorphism and IgE variability in asthmatic families CHEST, v. 111
Morton, NE. and Lio, P., 1997. Oligogenic linkage and map integration GENETIC MAPPING OF DISEASE GENES,
Thomas, NS., Wilkinson, J., Lio, P., Doull, I., Morton, NE. and Holgate, ST., 1997. Investigation of the genetic factors underlying asthma and atopy in outbred UK populations 5TH WEST-PACIFIC ALLERGY SYMPOSIUM / 7TH KOREA-JAPAN JOINT ALLERGY SYMPOSIUM,
1995
Bagnoli, F., Guasti, G. and Lio, P., 1995. Translation optimization in bacteria: Statistical models NONLINEAR EXCITATIONS IN BIOMOLECULES,
1994
Fani, R., Grifoni, A., Damiani, G., Lio, P. and Mori, E., 1994. Nucleotide Sequence of Azospirillum RAPD markers Azospirillum VI and Related Microorganisms:: Genetics - Physiology - Ecology (NATO ASI Series / Ecological Sciences),
Fani, R., Bandi, C., Bazzicalupo, M., Damiani, G., Di Cello, F., Fancelli, S., Gerace, L., Grifoni, A., Lio, P. and Mori, E., 1994. Phylogenetic Studies of the Genus Azospirillum Related Microorganisms:: Genetics - Physiology - Ecology (NATO ASI Series / Ecological Sciences),